Last updated: 2020-02-17

Checks: 6 1

Knit directory: Thesis_single_RNA/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191113) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
C:/Users/Moonkin/Documents/GitHub/Thesis_single_RNA/analysis/estimates_for_235_genes.rds analysis/estimates_for_235_genes.rds
C:/Users/Moonkin/Documents/GitHub/Thesis_single_RNA/analysis/regression_for_235_genes.txt analysis/regression_for_235_genes.txt

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory

Untracked files:
    Untracked:  analysis/Filter.Rmd
    Untracked:  analysis/MLE_and_regression_for_235_genes.Rmd
    Untracked:  analysis/Weighted_regression.Rmd
    Untracked:  analysis/clean_dataset_for_analysis.txt
    Untracked:  analysis/estimates_for_235_genes.RData
    Untracked:  analysis/estimates_for_235_genes.rds
    Untracked:  analysis/final_genotype_data.txt
    Untracked:  analysis/genes_to_search.txt
    Untracked:  analysis/genotypes.txt
    Untracked:  analysis/regression_for_235_genes.txt
    Untracked:  analysis/rplot.jpg
    Untracked:  analysis/search_script.py

Unstaged changes:
    Modified:   Data_sim.Rmd
    Modified:   analysis/MLE.py
    Modified:   analysis/MLE_with_si.py
    Modified:   analysis/Question_1.Rmd
    Modified:   analysis/Real_data_filter.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


First we load MLE estimates along with genotypes for top 235 genes and regression model outputs.

library(rlist)
Warning: package 'rlist' was built under R version 3.5.3
estimates<-list.load("C:/Users/Moonkin/Documents/GitHub/Thesis_single_RNA/analysis/estimates_for_235_genes.rds")
regression<-read.table("C:/Users/Moonkin/Documents/GitHub/Thesis_single_RNA/analysis/regression_for_235_genes.txt", header = T, sep = "\t")
mean_estimates=matrix(, nrow = 235, ncol = 3)
median_estimates=matrix(, nrow = 235, ncol = 3)

for (i in 1:235){
  current<-estimates[[i]][,1:3]
  mean_estimates[i,1]<-mean(as.numeric(current[,1]))
  mean_estimates[i,2]<-mean(as.numeric(current[,2]))
  mean_estimates[i,3]<-mean(as.numeric(current[,3]))
  median_estimates[i,1]<-median(as.numeric(current[,1]))
  median_estimates[i,2]<-median(as.numeric(current[,2]))
  median_estimates[i,3]<-median(as.numeric(current[,3]))
}
library(ggplot2)
Warning: package 'ggplot2' was built under R version 3.5.1
mean_estimates=data.frame(mean_estimates)
colnames(mean_estimates)<-c("kon","koff","kr")
ggplot(mean_estimates, aes(x=kon, y=koff))+geom_point()+labs(y = "k off",x="k on")

median_estimates=data.frame(median_estimates)
colnames(median_estimates)<-c("kon","koff","kr")
ggplot(median_estimates, aes(x=kon, y=koff))+geom_point()+labs(y = "k off",x="k on")

filtered_regression<-regression[which(median_estimates$koff<=10), ]
par(mfrow=c(1,3))
U=seq(0, 1, length.out = 112)
U=U[2:112]

plot(-log(U,base=10),-log(sort(filtered_regression$k_on_slope_p),base=10), main="k_on", xlab="Expected -log(p)", ylab="Observed  -log(p)")
lines(-log(U,base=10),-log(U,base=10))

plot(-log(U,base=10),-log(sort(filtered_regression$k_off_slope_p),base=10), main="k_off", xlab="Expected -log(p)", ylab="Observed  -log(p)")
lines(-log(U,base=10),-log(U,base=10))

plot(-log(U,base=10),-log(sort(filtered_regression$k_r_slope_p),base=10), main="k_r", xlab="Expected -log(p)", ylab="Observed  -log(p)")
lines(-log(U,base=10),-log(U,base=10))

filtered_regression[p.adjust(filtered_regression$k_on_slope_p, method = "BH" , n = length(filtered_regression$k_off_slope_p))<0.05,]
             gene k_on_int k_on_slope   k_on_int_p k_on_slope_p
2 ENSG00000197728 1.405574   2.012058 3.115331e-07  2.37079e-06
  k_on_int_se k_on_slope_se k_off_int k_off_slope k_off_int_p
2   0.2388814     0.3785599 -14.78051    193.1598   0.4750069
  k_off_slope_p k_off_int_se k_off_slope_se  k_r_int k_r_slope k_r_int_p
2   2.59334e-07     20.53759        32.5463 18.51257  120.4671 0.2022224
   k_r_slope_p k_r_int_se k_r_slope_se
2 2.457675e-06   14.32994     22.70893
filtered_regression[p.adjust(filtered_regression$k_off_slope_p, method = "BH" , n = length(filtered_regression$k_off_slope_p))<0.05,]
               gene k_on_int k_on_slope   k_on_int_p k_on_slope_p
2   ENSG00000197728 1.405574  2.0120582 3.115331e-07 2.370790e-06
147 ENSG00000151131 3.872758 -0.4931009 2.802306e-09 1.601740e-01
209 ENSG00000163811 5.073687 -1.0143604 1.708668e-13 2.073266e-03
    k_on_int_se k_on_slope_se k_off_int k_off_slope  k_off_int_p
2     0.2388814     0.3785599 -14.78051    193.1598 4.750069e-01
147   0.5391907     0.3459728 242.91804   -124.9144 3.696489e-05
209   0.5115814     0.3125421 409.08184   -179.6398 1.520882e-06
    k_off_slope_p k_off_int_se k_off_slope_se   k_r_int k_r_slope
2    2.593340e-07     20.53759       32.54630  18.51257  120.4671
147  6.714828e-04     53.73867       34.48152 533.49299 -270.0376
209  2.730323e-04     75.19260       45.93766 675.37453 -255.0446
       k_r_int_p  k_r_slope_p k_r_int_se k_r_slope_se
2   2.022224e-01 2.457675e-06   14.32994     22.70893
147 1.191089e-05 3.545150e-04  109.93939     70.54282
209 1.430224e-04 1.411996e-02  164.25906    100.35132
filtered_regression[p.adjust(filtered_regression$k_r_slope_p, method = "BH" , n = length(filtered_regression$k_off_slope_p))<0.05,]
               gene k_on_int k_on_slope   k_on_int_p k_on_slope_p
2   ENSG00000197728 1.405574  2.0120582 3.115331e-07  2.37079e-06
147 ENSG00000151131 3.872758 -0.4931009 2.802306e-09  1.60174e-01
    k_on_int_se k_on_slope_se k_off_int k_off_slope  k_off_int_p
2     0.2388814     0.3785599 -14.78051    193.1598 4.750069e-01
147   0.5391907     0.3459728 242.91804   -124.9144 3.696489e-05
    k_off_slope_p k_off_int_se k_off_slope_se   k_r_int k_r_slope
2    2.593340e-07     20.53759       32.54630  18.51257  120.4671
147  6.714828e-04     53.73867       34.48152 533.49299 -270.0376
       k_r_int_p  k_r_slope_p k_r_int_se k_r_slope_se
2   2.022224e-01 2.457675e-06   14.32994     22.70893
147 1.191089e-05 3.545150e-04  109.93939     70.54282
U=seq(0,30,by=0.01)
hist(filtered_regression$k_on_slope^2/filtered_regression$k_on_slope_se^2, breaks=100,freq = FALSE)
lines(U,dchisq(U,1))

hist(filtered_regression$k_off_slope^2/filtered_regression$k_off_slope_se^2, breaks=100,freq = FALSE)
lines(U,dchisq(U,1))

hist(filtered_regression$k_r_slope^2/filtered_regression$k_r_slope_se^2, breaks=100,freq = FALSE)
lines(U,dchisq(U,1))

ks.test(filtered_regression$k_on_slope^2/filtered_regression$k_on_slope_se^2,dchisq(U,1))

    Two-sample Kolmogorov-Smirnov test

data:  filtered_regression$k_on_slope^2/filtered_regression$k_on_slope_se^2 and dchisq(U, 1)
D = 0.80329, p-value < 2.2e-16
alternative hypothesis: two-sided
ks.test(filtered_regression$k_off_slope^2/filtered_regression$k_off_slope_se^2,dchisq(U,1))

    Two-sample Kolmogorov-Smirnov test

data:  filtered_regression$k_off_slope^2/filtered_regression$k_off_slope_se^2 and dchisq(U, 1)
D = 0.76561, p-value < 2.2e-16
alternative hypothesis: two-sided
ks.test(filtered_regression$k_r_slope^2/filtered_regression$k_r_slope_se^2,dchisq(U,1))

    Two-sample Kolmogorov-Smirnov test

data:  filtered_regression$k_r_slope^2/filtered_regression$k_r_slope_se^2 and dchisq(U, 1)
D = 0.77121, p-value < 2.2e-16
alternative hypothesis: two-sided

Here the scatterplot of estimates vs genotype for ENSG00000197728 gene, the only one that with all slopes coefficients being significant at 0.05 level after BH adjustment.

ENSG00000197728=estimates[[2]]
ENSG00000151131=estimates[[147]]
ENSG00000163811=estimates[[209]]

par(mfrow=c(1,3))
model1<- lm(k_on~genotype, data=ENSG00000197728)
model2<- lm(k_off~genotype, data=ENSG00000197728)
model3<- lm(k_r~genotype, data=ENSG00000197728)

plot(ENSG00000197728$genotype,ENSG00000197728$k_on, xlab="genotype", ylab="k_on estimate", main= "k_on scatterplot by genotype")
abline(model1, col="red")

plot(ENSG00000197728$genotype,ENSG00000197728$k_off, xlab="genotype", ylab="k_off estimate", main= "k_off scatterplot by genotype")
abline(model2, col="red")

plot(ENSG00000197728$genotype,ENSG00000197728$k_r, xlab="genotype", ylab="k_r estimate", main= "k_r scatterplot by genotype")
abline(model3, col="red")

print(summary(lm(k_on~genotype, data=ENSG00000197728)))

Call:
lm(formula = k_on ~ genotype, data = ENSG00000197728)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.2954 -0.4779 -0.2745  0.2301  6.7212 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.4056     0.2389   5.884 3.12e-07 ***
genotype      2.0121     0.3786   5.315 2.37e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.546 on 51 degrees of freedom
Multiple R-squared:  0.3565,    Adjusted R-squared:  0.3438 
F-statistic: 28.25 on 1 and 51 DF,  p-value: 2.371e-06
print(summary(lm(k_off~genotype, data=ENSG00000197728)))

Call:
lm(formula = k_off ~ genotype, data = ENSG00000197728)

Residuals:
    Min      1Q  Median      3Q     Max 
-370.79   15.02   15.71   16.62  628.46 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   -14.78      20.54  -0.720    0.475    
genotype      193.16      32.55   5.935 2.59e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 132.9 on 51 degrees of freedom
Multiple R-squared:  0.4085,    Adjusted R-squared:  0.3969 
F-statistic: 35.22 on 1 and 51 DF,  p-value: 2.593e-07
print(summary(lm(k_r~genotype, data=ENSG00000197728)))

Call:
lm(formula = k_r ~ genotype, data = ENSG00000197728)

Residuals:
    Min      1Q  Median      3Q     Max 
-253.97   -0.49    5.03   11.63  464.30 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)    18.51      14.33   1.292    0.202    
genotype      120.47      22.71   5.305 2.46e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 92.73 on 51 degrees of freedom
Multiple R-squared:  0.3556,    Adjusted R-squared:  0.3429 
F-statistic: 28.14 on 1 and 51 DF,  p-value: 2.458e-06
print(summary(lm(k_off~genotype, data=ENSG00000151131)))

Call:
lm(formula = k_off ~ genotype, data = ENSG00000151131)

Residuals:
    Min      1Q  Median      3Q     Max 
-224.66 -111.19    8.66   13.75  757.08 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   242.92      53.74   4.520  3.7e-05 ***
genotype     -124.91      34.48  -3.623 0.000671 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 153.3 on 51 degrees of freedom
Multiple R-squared:  0.2047,    Adjusted R-squared:  0.1891 
F-statistic: 13.12 on 1 and 51 DF,  p-value: 0.0006715
print(summary(lm(k_r~genotype, data=ENSG00000151131)))

Call:
lm(formula = k_r ~ genotype, data = ENSG00000151131)

Residuals:
    Min      1Q  Median      3Q     Max 
-473.08 -228.95   27.97   40.47 1660.48 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   533.49     109.94   4.853 1.19e-05 ***
genotype     -270.04      70.54  -3.828 0.000355 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 313.7 on 51 degrees of freedom
Multiple R-squared:  0.2232,    Adjusted R-squared:  0.208 
F-statistic: 14.65 on 1 and 51 DF,  p-value: 0.0003545
print(summary(lm(k_off~genotype, data=ENSG00000163811)))

Call:
lm(formula = k_off ~ genotype, data = ENSG00000163811)

Residuals:
    Min      1Q  Median      3Q     Max 
-228.49  -74.45  -44.73   49.12  714.02 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   409.08      75.19   5.440 1.52e-06 ***
genotype     -179.64      45.94  -3.911 0.000273 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 211.7 on 51 degrees of freedom
Multiple R-squared:  0.2307,    Adjusted R-squared:  0.2156 
F-statistic: 15.29 on 1 and 51 DF,  p-value: 0.000273

sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17763)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_3.1.0 rlist_0.4.6.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2        compiler_3.5.0    pillar_1.4.2     
 [4] later_0.8.0       git2r_0.26.1      highr_0.7        
 [7] plyr_1.8.4        workflowr_1.5.0   tools_3.5.0      
[10] digest_0.6.17     evaluate_0.11     tibble_2.1.3     
[13] gtable_0.2.0      pkgconfig_2.0.2   rlang_0.4.2      
[16] yaml_2.2.0        withr_2.1.2       stringr_1.3.1    
[19] dplyr_0.8.3       knitr_1.20        fs_1.3.1         
[22] rprojroot_1.3-2   grid_3.5.0        tidyselect_0.2.5 
[25] glue_1.3.0        data.table_1.11.8 R6_2.3.0         
[28] rmarkdown_1.10    purrr_0.2.5       magrittr_1.5     
[31] backports_1.1.2   scales_1.0.0      promises_1.0.1   
[34] htmltools_0.3.6   assertthat_0.2.0  colorspace_1.3-2 
[37] httpuv_1.5.1      labeling_0.3      stringi_1.1.7    
[40] lazyeval_0.2.1    munsell_0.5.0     crayon_1.3.4